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Abstract. In this paper we propose that the following relations hold exactly for the lattice 
animal model of branched polymers. The resistivity exponent 5, is exactly equal to &, the 
fractal dimensionality of the backbone of the animals. The random walk fractal dimension- 
ality d,  is given by, d,  = d,+ & where d,  is the fractal dimensionality of the animals. The 
spectral dimension ds of the backbone of the animals is given by, ds = 1 at all dimensions, 
i.e. the backbone is a highly decorated but essentially chain-like object. These are in 
contrast with earlier suggestions that one needs two (three) topological properties to obtain 
la (d , ) .  We propose that these relations may hold for all clusters for which loops are 
irrelevant and have a finite upper critical dimensionality. The implications of these results 
for diffusion-limited aggregates and percolation clusters are also discussed. 

1. Introduction 

In the past few years random processes on fractal structures have been studied with 
increasing interest. The most prominent and physically appealing fractal systems are 
perhaps the largest percolation cluster at the percolation threshold pc ,  lattice animals 
which are a model of dilute branched polymers in a good solvent and diffusion-limited 
(Witten-Sander) aggregates (DLAS). In the past two years ordinary (P6lya) random 
walks on these random clusters have been studied by several authors. These random 
walks provide a simple way of measuring the spectral dimension d, which describes 
the power-law behaviour of harmonic excitations N ( w )  at low frequency w :  N ( w )  - 
wds-'. The spectral dimension of any fractal is given by d, = 2df/d, (Alexander and 
Orbach 1982), where df is the fractal dimension of the cluster and d, is the fractal 
dimension of the random walks on that cluster. 

Very recently considerable effort has been devoted to the study of the possible 
relationship between static and dynamic (transport) properties of these clusters 
(Alexander and Orbach 1982, Rammal and Toulouse 1983, Meakin and Stanley 1983, 
Sahimi and Jerauld 1984, Wilke et a1 1984, Aharony and Stauffer 1984). However at 
present there is no clear picture. In this paper we present and discuss several results 
which we hope will help to clarify some of the presently unsettled issues. In particular 
we present some possibly exact results for the lattice animal model of branched 
polymers. The implications of these results for several hypotheses that have recently 
been proposed are also discussed. In particular we suggest that for the percolation 
conductivity problem it may be more fruitful to look for a possible relation between 
the conductivity exponent and the backbone properties. 
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The plan of this paper is as follows. In 0 2 we summarise and discuss briefly all 
valid hypotheses for lattice animals. Our motivation is to give the reader an account 
of the state of the art and the unresolved issues concerning transport processes in 
lattice animals. Our own results are presented in Q 3. The possible implications of 
these results for DLAS and percolation clusters are discussed in Q 4. We summarise the 
paper in the last section. 

2. Review of transport and topological properties of lattice animals 

Wilke et a1 (1984) and Sahimi and Jerauld (1984) were the first to investigate random 
walks on lattice animals in order to gain insight into the transport (dynamic) properties 
of these fractal structures. The problem was called ‘the parasite problem’ by Wilke et 
al (1984), following de Genne’s (1976a) ‘ant problem’ which is the description of 
random walks on percolation networks of conductors and insulators. Wilke et a1 (1984) 
assumed that the animals can be represented by a structure similar to the nodes and 
links model of the backbone of percolation clusters (Skal and Shklovskii 1974, de 
Gennes 1976b) and, with the aid of some heuristic arguments, attempted to establish 
a relation between the dynamical property d, and the static topological properties d, 
and a,, where d, is the fractal dimensionality of random walks on the animal and d, 
and are the fractal dimensionalities of the animal and its backbone, respectively. 
Monte Carlo calculations of Wilke et a1 (1984) and the renormalisation group method 
(Sahimi and Jerauld 1984) yielded estimates of d ,  that were in rough agreement with 
a generalisation of the Alexander-Orbach (AO) (1982) conjecture, d ,  = 3/2d,. 

A more accurate study of random walks on lattice animals by Havlin et a1 (1984) 
showed that the AO conjecture may not hold for animals at low dimensions. In addition, 
Havlin et a1 (1984) proposed that the exponent La, which characterises the resistance 
between two widely separated points on the animal, is given by 

l a  = da/ dc (1) 

where d, is ‘the chemical dimension’ of the animal. If M is the number of sites within 
path length L of a given site, then d, is defined by, M - (L)dc, where ( . . . ) denotes an 
average over L. Extensive computer simulations of Havlin et a1 (1984) supported 
equation (1). Thus a relation between dynamic (5,) and static (d, and d,) properties 
was established, although at the price of introducing an additional dimensionality d,. 
Djordjevic et a1 (1984) pointed out that d, can be evaluated in two different ways. 
One is to take an ensemble of clusters with constant M and calculate their average L, 
as mentioned above. A second way is to choose clusters of the same L and make the 
average over M. For percolation clusters at p ,  both averages give the same value d,. 
However, for lattice animals Djordjevic et a1 (1984) presented numerical evidence and 
theoretical arguments that d, = 1 at all dimensions for the constant - L ensemble. They 
also showed that the spectal dimension d, equals unity at all dimensions for these 
particular clusters. These results are the only hypotheses that appear to be valid for 
lattice animals. 

3. Possible relations for topological and transport properties of lattice animals 

To derive our results for lattice animals, we make use of the fact that for the lattice 
animal model of branched polymers, one can usually neglect the presence of loops 
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without affecting the statistics (Lubensky and Isaacson 1978). Therefore a lattice 
animal on a large scale can be viewed as a branched fractal without loops. Thus the 
resistivity exponent la, should be equal to d,, the fractal dimension of the backbone 
of lattice animals 

5, = da (2) 

because when loops are not importan't all paths between two widely separated points 
have the same fractal dimension. Although this result may seem obvious at first, to 
our knowledge it has not been published before, but it is the key to our results discussed 
below. This is perhaps because the concept of the backbone has not been investigated 
extensively for animals (Sahimi 1985). The notion of chemical or topological dimension 
was instead introduced to relate 5, to other quantities, as discussed above. We now 
present numerical evidence in support of (2). Equation (2) is trivially satisfied at d = 1, 
where 5, = da = 1. Also at and above d = 8, the upper critical dimensionality of lattice 
animals (Lubensky and Isaacson 1978), one has 5, = da = 2. Further numerical evidence 
is provided by the work of Havlin et a1 (1984) and Sahimi (1985). If we combine 
equations ( 1 )  and (2) we obtain 

d ,  = c i a /  d,. (3) 
One has (Derrida and De Seze 1982) d, (d  = 2 ) =  1.56 and (Parisi and Sourlas 1981) 
d,(d = 3) = 2. On the other hand (Sahimi 1985), da(d  = 2) = 1.14 and da(d  = 3)  =L 1.39. 
These together with equation (2), mean that d, (d  = 2) = 1.37 and d,(d = 3) = 1.44, in 
good agreement with the estimates of Havlin et al (1984), d,(d = 2 ) =  1.33i0.05 and 
d,( d = 3 )  = 1.45 * 0.05. We also note that the percolation conductivity exponent !( fA= 
t /  vp, w)ere vp is the correlation length exponent) can be written as != d - 2 +  lP, 
where lp is the analogue of 5, for percolation. At and above d = 6, the upper critical 
dimepionality of percolation, loops tecome irrelevant for the conductivity problem 
and lP takes its meanfield value, i.e; l P ( d  2 6) = 2. This means that as soon as loops 
become irrelevant for percolation, lP= dp, where dp is the fractal dimension of the 
backbone of the largest percolation cluster at pc. However, below d = 6 loops are 
relevant and an equation similar to (2) does not hold for the percolation conductivity 
problem. With the aid of equation (3 )  and the estimates of Havlin et a1 (1984) for d,, 
one can calculate d, for 1 d d =s 8 .  The results are presented in table 1 .  It can be seen 
that d, and thus 5, rise smoothly from their value at d = 1 to their mean-field value 
of 2 for d 3 8. This monotonic dependence of d, on d not only supports equation (3 )  

Table 1. Values of the fractal dimension d, and (s, of lattice animals and their backbone, 
respectively, at dimension d. 

d 
~~ ~ 

1 1 
1.56 1.14 
2 1.39 
2.4 1.49 
2.78 1.61 
3.17 1.76 
3.57 1.88 
4 2 
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(since for a loopless fractal one expects 5, to be monotonically dependent upon d ) ,  but 
also is in contrast with d,,, which has non-monotonic dependence on d (Harris and 
Lubensky 1983). 

The chemical dimension d ,  has been studied by Vannimenus et a1 (1984) for directed 
lattice animals and percolation. For directed lattice animals they have argued that 
d,= l / v l l ,  where v l l  is the longitudinal correlation length of the animal. If one uses 
the correlation length exponent of animals, v, = l /d,  and the backbone of animals, 
Y, = l/da one can rewrite (2) as d, = Ya/ v,, which is similar to the result of Vannimenus 
et a1 (1984). (Note that unlike percolation v, # Y,.) 

Since one can use the Einstein relation to write 5, as 5, = d ,  - d,, then in view of 
( 2 )  one obtains 

d ,  = d ,  + d,. (4) 

Aharony and Stauffer (1984) presented an argument according to which, d ,  = d; t  1 
for. da< 2. This, together with (4), means that d, = 1, for 1 d < 3. This not only 
contradicts the data of table 1, but also means that the fractal dimension of the backbone 
of lattice animals remains constant in the range 1 S d S 3, which is not possible. Thus 
we believe that the Aharony-Stauffer relation does not hold for lattice animals, although 
in view of (1) it does hold if d ,  is replaced by d,. On the other hand, one can write 
5, as 5, = dw - d, (Stanley and Coniglio 1984), where d, is the fractal dimension of 
the random walks on the backbone of lattice animals. Therefore, in view of equations 
(3) and (4), the spectral dimension ds= 2da /dw of the backbone of lattice animals is 
given by 

Thus, the spectral dimension of the backbone of lattice animals is superuniversal and 
equals one. This is in contrast with the spectral dimension of the backbone of percolation 
clusters which varies continuously (Stanley and Coniglio 1984) between ds( d = 2) = 1.25 
and ds(d  2 6 )  = 1. Equation (4) also shows that the AO conjecture, d ,  = 3/2d,,  does 
not hold for lattice animals for all d < 8, since this conjecture, together with (4), yields 
d, = 1/2d,, which contradicts the data of table 1. Family and Coniglio (1984) pointed 
out that the AO conjecture cannot hold for lattice animals at d = 2, while Havlin et a1 
(1984) presented numerical evidence against the AO conjecture for animals at low 
dimensions. We find the present argument somewhat more transparent and convincing 
since it relies on analytic results that may hold at all dimensions. The recent numerical 
calculations of Rammal et a1 (1984) indicate that the AO conjecture may also be an 
excellent approximation for percolation clusters for all d < 6 ,  but not an exact result. 

We point out that our result ds = 1 for the backbone of animals is not the same as 
that of Djordjevic et a1 (1984) mentioned above. Indeed, the fractal dimension of the 
L-constant clusters described above is not the same as 2,. Here, we are presenting a 
result (equation (5)) without any reference to the type of ensemble or averaging process. 
The backbone of lattice animals arises naturally in their structure in the same way that 
the backbone of percolation clusters does. In this sense the backbone of lattice animals 
may be one of the very few fractals that have a superuniversal property. 

ds=l  for all d. (5) 

4. Possible implications for percolation clusters and diffusion-limited aggregates 

For percolation clusters one can similarly define a ‘chemical distance’ as follows. 
Suppose one arbitrarily chooses an occupied site in a percolation cluster as the reference 
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site. The occupied nearest neighbours of this site represent a ‘shell’ lying at a chemical 
distance L = 1 from the reference site. The next-nearest-neighbour sites constitute a 
shell at chemical distance L = 2, and so forth. Suppose S (  L )  is the average of the total 
number of occupied sites included in a sub-cluster bounded by the Lth shell. Then 
(Havlin and Nossal 1984), S (  L )  - Lidp, where d ,  is the fractal dimension of the largest 
percolation cluster at pc and v  ̂ is a universal exponent. Thus one may observe that 
since 6 is similar to l /d,  investigated above for the animals one may write 

C = dp/ d ,  (6) 

which appears to be very accurate. For example at d = 2 one has d, = 1.65 and d ,  = g, 
and therefore (6) predicts that C = 0.87, in complete agreement with the numerical 
estimate (Havlin and Nossal 1984, Hong er a1 1984), 3=0.87*0.02. One also has 
(Sahimi 1984b) dp( d = 3)  = 1.92 and dp( d = 4) = 2.10, which together with d,(d = 3) 
2.53 and dp( d = 4) = 3.06, yield, C( d = 3) = 0.76 and C( d = 4) = 0.68. These are in good 
agreement with the estimates (Alexandrowicz 1980), 6( d = 3) = 0.74 * 0.02 and ;( d = 
4) = 0.64 f 0.04. Equation (6) is also exact at d = 1 and for d 3 6. 

We remark that one usually writes $ as t = d, /d , ,  where here d,  is the chemical 
dimension of percolation clusters. In view of (6) and its accuracy one should have 
d,  = d,. Indeed, recent extensive Monte Carlo calculations of Grassberger (1985a) 
yielded d,(d = 2) = 1.675, which is close to the currently accepted value of d p ( d  = 2) 
mentioned above. However, d,  and dp cannot be equal for general dimensionality d. 
Recent field-theoretic calculations of Cardy and Grassberger (1985) and Janssen (1985) 
show that 

(7) ; = A + -  
2 2k+O(E2)  

where E = 6 - d .  This yields d , = 2 - & ~ + 0 ( . 5 ~ ) ,  in contrast with d p = 2 + h ~ + 0 ( . 5 2 )  
(Harris and Lubensky 1983). One should note that t is essentially a dynamical property 
and it was first used by Alexandrowicz (1980) in the definition of ‘time’ in his cluster 
growth model of percolation clusters. Equation (7) also shows that the conjecture of 
Havlin and Nossal (1984), d ,  = vi’ + F’, cannot be correct for general d. The fact 
that 6 does not seem to be related to the static properties of percolation clusters is 
another indication that the static and dynamical properties of percolation clusters (or 
more generally, all clusters for which loops are relevant) may not be related in a simple 
manner. Very recently, Margolina (1985) proposed a derivation of the Havlin-Nossal, 
based on the radom walk ofthe ‘butterfly’ which visits only the perimeter sites ofthe cluster 
generated by the walk. 

It is widely believed that for DLAS loops are not relevant (although we are not 
aware of any published proof of this). Since DLAS do not have an upper critical 
dimensionality (Witten and Sander 1983) their fractal dimensionality d,, diverges as 
d + CO. This can be understood by considering DLAS on the Cayley tree (i.e. d =CO). 
All of the sites of the tree are occupied by the incoming particles and the screening 
effect is absent. Consequently, the aggregate fills the tree completely and d,,=co. 
Since there is a unique path between any two points on the tree which is also the 
minimum path, one has d ,  = d,, for a Cayley tree. Therefore, ( 1 )  predicts that I,, = 1 
on the tree, whereas it is easily seen that lw, = 2 in this limit (Family and Coniglio 
1984). In fact recent computer simulations of Meakin er a1 (1984) and Sahimi er a1 
(1985) suggest that d,=  d,, for all dimensionalities and thus ( 1 )  is not valid at any d 
because it predicts l,, = 1 for all d. Since ( 1 )  was hypothesised based on the assumption 
that loops are irrelevant in the structure of the cluster, its breakdown for DLAS may 
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indicate that loops are relevant for these clusters. On the other hand, the breakdown 
of (1) for DLAS might be caused only by the fact that these clusters do not have an 
upper critical dimensionality. We thus propose that the results of this paper may hold 
for all clusters for which loops are irrelevant and haoe aJinite upper critical dimension- 
ality. 

In defining the backbone of DLAS on a Cayley tree an ambiguity may arise. If the 
backbone is defined as the set of sites on all paths connecting the origin to the perimeter 
of the tree, then all of the sites of the tree are part of the backbone and d,, = d,, = a. 
This means that ( 2 )  cannot hold for DLAS, consistent with our assertion that an infinite 
upper critical dimensionality may cause the breakdown of ( 2 )  for DLAS. This definition 
of the backbone is also consistent with the usual definition for the percolation c!usters, 
since with this definition all of the sites of the network will be part of the current-carrying 
part of it. However, if the backbone is defined as the set of sites that connect two 
points on the tree by a random walk, then 8, = d ,  = 2 ,  which means that ( 2 )  is valid 
for DLAS in this limit. We believe that the first definition is the relevant one, since 
with this definition (1) and ( 2 ) ,  which are hypothesised on the assumption that loops 
are irrelevant, do not contradict each other (they both do not hold) in the limit of the 
Cayley tree. The results of Sahimi et a1 (1985) also suggest that the Aharony-Stauffer 
relation, d ,  = 1 + d,, may not hold for DLAS at d = 2, although it may be a very good 
approximation. 

The results presented in this paper indicate that for percolation conductivity it may 
be more fruitful to look for a relation between the exponent t and the backbone 
exponents. Indeed, it was recently observed (Sahimi 1984a) that the relation t 2 1 + PB, 
where PB is the backbone exponent, is very accurate for d ,  3 2. However, an equation 
similar to (4) holds for percolation clusters only for d 2 6 and therefore the relation 
between t and other exponents (if it indeed exists) is probably more complicated than 
the results presented here. 

5. Summary 

In summary, we presented and discussed several relations between dynamical and 
static properties of lattice animal model of branched polymers. We also proposed that 
these relations may hold for all clusters for which loops are irrelevant and have a finite 
upper critical dimensionality. Our results indicate that the AO conjecture does not 
hold for animals at all d < 8 ,  and that the Aharony-Stauffer relation also does not 
hold for lattice animals. We also discussed the implications of our results for diffusion- 
limited aggregates and percolation clusters. 

Very recently, Havlin et a1 (1985) proposed that the general relation between the 
random walk fractal dimensionality d,  and the topological properties of clusters for 
which loops are irrelevant is given by 

where d f  is the fractal dimensionality of the cluster and dr is the chemical dimension 
of its skeleton. The skeleton of a cluster whose chemical radius is L is defined as the 
subcluster which contains only sites belonging to the shortest paths from a chosen site 
to its Lth chemical shell. This definition implies that all dead-ends, except those 
terminating at the Lth shell, do not belong to the skeleton. Therefore, according to 
equations (1) and (8) one needs two topological properties to obtain the resistivity 
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exponent and three properties to obtain d,. The results presented in this paper indicate 
that this may not be the case and one may need only two(one) topological properties 
to obtain d ,  (resistivity exponent), at least for the class of loopless fractals considered in 
this paper. 
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